Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.058
Filtrar
2.
Arch Virol ; 169(5): 95, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594485

RESUMEN

The first detection of a human infection with avian influenza A/H6N1 virus in Taiwan in 2013 has raised concerns about this virus. During our routine surveillance of avian influenza viruses (AIVs) in live-bird markets in Egypt, an H6N1 virus was isolated from a garganey duck and was characterized. Phylogenetic analysis indicated that the Egyptian H6N1 strain A/Garganey/Egypt/20869C/2022(H6N1) has a unique genomic constellation, with gene segments inherited from different subtypes (H5N1, H3N8, H7N3, H6N1, and H10N1) that have been detected previously in AIVs from Egypt and some Eurasian countries. We examined the replication of kinetics of this virus in different mammalian cell lines (A549, MDCK, and Vero cells) and compared its pathogenicity to that of the ancestral H6N1 virus A/Quail/HK/421/2002(H6N1). The Egyptian H6N1 virus replicated efficiently in C57BL/6 mice without prior adaptation and grew faster and reached higher titers than in A549 cells than the ancestral strain. These results show that reassortant H6 AIVs might pose a potential threat to human health and highlight the need to continue surveillance of H6 AIVs circulating in nature.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Ratones , Chlorocebus aethiops , Humanos , Gripe Aviar/epidemiología , Egipto/epidemiología , Filogenia , Células Vero , Subtipo H7N3 del Virus de la Influenza A , Ratones Endogámicos C57BL , Animales Salvajes , Patos , Mamíferos
3.
Science ; 384(6691): 12-13, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574129

RESUMEN

Farm worker becomes infected as H5N1 appears to spread between dairy cows in five states.


Asunto(s)
Enfermedades de los Bovinos , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Femenino , Bovinos , Animales , Humanos , Gripe Aviar/epidemiología , Agricultores , Aves , Industria Lechera , Enfermedades de los Bovinos/epidemiología
4.
Commun Biol ; 7(1): 476, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637646

RESUMEN

Since late 2021, highly pathogenic avian influenza (HPAI) viruses of A/goose/Guangdong/1/1996 (H5N1) lineage have caused widespread mortality in wild birds and poultry in the United States. Concomitant with the spread of HPAI viruses in birds are increasing numbers of mammalian infections, including wild and captive mesocarnivores and carnivores with central nervous system involvement. Here we report HPAI, A(H5N1) of clade 2.3.4.4b, in a common bottlenose dolphin (Tursiops truncatus) from Florida, United States. Pathological findings include neuronal necrosis and inflammation of the brain and meninges, and quantitative real time RT-PCR reveal the brain carried the highest viral load. Virus isolated from the brain contains a S246N neuraminidase substitution which leads to reduced inhibition by neuraminidase inhibitor oseltamivir. The increased prevalence of A(H5N1) viruses in atypical avian hosts and its cross-species transmission into mammalian species highlights the public health importance of continued disease surveillance and biosecurity protocols.


Asunto(s)
Delfín Mular , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Florida/epidemiología , Neuraminidasa , Virus de la Influenza A/fisiología , Aves
5.
Virol J ; 21(1): 67, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509569

RESUMEN

Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Vacunas , Animales , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Epítopos de Linfocito T/genética , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Epítopos de Linfocito B , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Vacunas de Subunidad/genética
6.
Viruses ; 16(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543724

RESUMEN

In winter 2021-2022, H5N1 and H5N8 high-pathogenicity avian influenza (HPAI) viruses (HPAIVs) caused serious outbreaks in Japan: 25 outbreaks of HPAI at poultry farms and 107 cases in wild birds or in the environment. Phylogenetic analyses divided H5 HPAIVs isolated in Japan in the winter of 2021-2022 into three groups-G2a, G2b, and G2d-which were disseminated at different locations and times. Full-genome sequencing analyses of these HPAIVs revealed a strong relationship of multiple genes between Japan and Siberia, suggesting that they arose from reassortment events with avian influenza viruses (AIVs) in Siberia. The results emphasize the complex of dissemination and reassortment events with the movement of migratory birds, and the importance of continual monitoring of AIVs in Japan and Siberia for early alerts to the intrusion of HPAIVs.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Japón/epidemiología , Filogenia , Virulencia , Aves , Animales Salvajes , Virus de la Influenza A/genética
7.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542289

RESUMEN

Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic avian influenza virus (HPAIV) infection up-regulated TRIM21 expression in A549 cells. Western blot and qPCR results showed that knockdown of TRIM21 alleviated oxidative stress and ferroptosis induced by H5N1 HPAIV and promoted the activation of antioxidant pathways. Co-IP results showed that TRIM21 promoted oxidative stress and ferroptosis by regulating the SQSTM1-NRF2-KEAP1 axis by increasing SQSTM1 K63-linked polyubiquitination under the condition of HPAIV infection. In addition, TRIM21 attenuated the inhibitory effect of antioxidant NAC on HPAIV titers and enhanced the promoting effect of ferroptosis agonist Erastin on HPAIV titers. Our findings provide new insight into the role of TRIM21 in oxidative stress and ferroptosis induced by viral infection.


Asunto(s)
Ferroptosis , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
8.
Emerg Infect Dis ; 30(4): 738-751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38478379

RESUMEN

Highly pathogenic avian influenza (HPAI) viruses have potential to cross species barriers and cause pandemics. Since 2022, HPAI A(H5N1) belonging to the goose/Guangdong 2.3.4.4b hemagglutinin phylogenetic clade have infected poultry, wild birds, and mammals across North America. Continued circulation in birds and infection of multiple mammalian species with strains possessing adaptation mutations increase the risk for infection and subsequent reassortment with influenza A viruses endemic in swine. We assessed the susceptibility of swine to avian and mammalian HPAI H5N1 clade 2.3.4.4b strains using a pathogenesis and transmission model. All strains replicated in the lung of pigs and caused lesions consistent with influenza A infection. However, viral replication in the nasal cavity and transmission was only observed with mammalian isolates. Mammalian adaptation and reassortment may increase the risk for incursion and transmission of HPAI viruses in feral, backyard, or commercial swine.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Aves , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar , Mamíferos , Filogenia , Aves de Corral , Porcinos
10.
Vet Microbiol ; 292: 110038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458047

RESUMEN

In 2020, an H5N1 avian influenza virus of clade 2.3.4.4b was detected in Europe for the first time and was spread throughout the world by wild migratory birds, resulting in the culling of an unprecedented number of wild birds and poultry due to the epidemic. In February 2023, we isolated and identified a strain of H5N1 high pathogenicity avian influenza virus from a swab sample from a grey crane in Ningxia, China. Phylogenetic analysis of the Hemagglutinin (HA) gene showed that the virus belonged to clade 2.3.4.4b, and several gene segments were closely related to H5N1 viruses infecting humans in China. Analysis of key amino acid sites revealed that the virus contained multiple amino acid substitutions that facilitate enhanced viral replication and mammalian pathogenicity. The results of animal challenge experiments showed that the virus is highly pathogenic to chickens, moderately pathogenic to BALB/c mice, and highly infectious but not lethal to mallards. Moreover, the virus exhibited minor antigenic drift compared with the H5-Re14 vaccine strain. To this end, we need to pay more attention to the monitoring of wild birds to prevent further spread of viruses to poultry and mammals, including humans.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Enfermedades de los Roedores , Humanos , Ratones , Animales , Aves de Corral , Pollos , Filogenia , Virulencia , Patos , Animales Salvajes , Mamíferos
11.
Eur J Med Chem ; 269: 116305, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518525

RESUMEN

Inspired by our earlier findings regarding neuraminidase (NA) inhibitors interacting with 150-cavity or 430-cavity of NA, sixteen novel polyheterocyclic NA inhibitors with 1,3,4-oxadiazole thioetheramide as core backbone were designed and synthesized based on the lead compound ZINC13401480. Of the synthesized compounds, compound N5 targeting 150-cavity exerts the best inhibitory activity against the wild-type H5N1 NA, with IC50 value of 0.14 µM, which is superior to oseltamivir carboxylate (OSC) (IC50 = 0.31 µM). Compound N10 targeting 430-cavity exhibits the best activity against the H5N1-H274Y mutant NA. Although the activity of N10 is comparable to that of OSC for wild-type H5N1 inhibition, it is approximately 60-fold more potent than OSC against the H274Y mutant, suggesting that it is not easy for the virus to develop drug resistance and is attractive for drug development. N10 (EC50 = 0.11 µM) also exhibits excellent antiviral activity against H5N1, which is superior to the positive control OSC (EC50 = 1.47 µM). Molecular docking study shows that the occupation of aromatic fused rings and oxadiazole moiety at the active site and the extension of the substituted phenyl to the 150-cavity or 430-cavity make great contributions to the good potency of this series of polyheterocyclic NA inhibitors. Some advancements in the discovery of effective target-specific NA inhibitors in this study may offer some assistance in the development of more potent anti-influenza drugs.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Neuraminidasa , Oseltamivir/análogos & derivados , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Antivirales/química , Oseltamivir/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Oxadiazoles/farmacología , Farmacorresistencia Viral
12.
13.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305155

RESUMEN

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , 60550 , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Virus de la Parainfluenza 5 , Animales , Humanos , Ratones , Hurones/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunidad Mucosa , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , 60550/química , 60550/clasificación , 60550/genética , 60550/inmunología , Gripe Aviar/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/transmisión , Gripe Aviar/virología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , 60514/métodos , Virus de la Parainfluenza 5/genética , Virus de la Parainfluenza 5/inmunología , Virus de la Parainfluenza 5/metabolismo , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Administración Intranasal , Aves de Corral/virología , Inmunoglobulina A/inmunología , Linfocitos T/inmunología
14.
Nanomedicine (Lond) ; 19(9): 741-754, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38390688

RESUMEN

Aims: To develop an effective universal vaccine against antigenically different influenza viruses. Materials & methods: We generated influenza virus-like particles (VLPs) expressing the H1 and H3 antigens with or without M2e5x. VLP-induced immune responses and crossprotection against H1N1, H3N2 or H5N1 viruses were assessed to evaluate their protective efficacy. Results: H1H3M2e5x immunization elicited higher crossreactive IgG antibodies than H1H3 VLPs. Upon challenge, both VLPs enhanced lung IgG, IgA and germinal center B-cell responses compared with control. While these VLPs conferred protection, H1H3M2e5x showed greater lung viral load reduction than H1H3 VLPs with minimal body weight loss. Conclusion: Utilizing VLPs containing dual-hemagglutinin, along with M2e5x, can be a vaccination strategy for inducing crossprotection against influenza A viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Ratones , Gripe Humana/prevención & control , Hemaglutininas , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/uso terapéutico , Inmunoglobulina G , Infecciones por Orthomyxoviridae/prevención & control , Ratones Endogámicos BALB C
15.
Emerg Infect Dis ; 30(4): 812-814, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38413243

RESUMEN

We report full-genome characterization of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus from an outbreak among sea lions (August 2023) in Argentina and possible spillover to fur seals and terns. Mammalian adaptation mutations in virus isolated from marine mammals and a human in Chile were detected in mammalian and avian hosts.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Gripe Aviar/epidemiología , Argentina/epidemiología , Aves , Brotes de Enfermedades , Filogenia , Mamíferos
16.
Zoonoses Public Health ; 71(3): 314-323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362732

RESUMEN

AIMS: Outbreaks of avian influenza in poultry farms are currently increasing in frequency, with devastating consequences for animal welfare, farmers and supply chains. Some studies have documented the direct spread of the avian influenza virus between farms. Prevention of spread between farms relies on biosecurity surveillance and control measures. However, the evolution of an outbreak on a farm might vary depending on the virus strain and poultry species involved; this would have important implications for surveillance systems, epidemiological investigations and control measures. METHODS AND RESULTS: In this study, we utilized existing parameter estimates from the literature to evaluate the predicted course of an epidemic in a standard poultry flock with 10,000 birds. We used a stochastic SEIR simulation model to simulate outbreaks in different species and with different virus subtypes. The simulations predicted large differences in the duration and severity of outbreaks, depending on the virus subtypes. For both turkeys and chickens, outbreaks with HPAI were of shorter duration than outbreaks with LPAI. In outbreaks involving the infection of chickens with different virus subtypes, the shortest epidemic involved H7N7 and HPAIV H5N1 (median duration of 9 and 17 days, respectively) and the longest involved H5N2 (median duration of 68 days). The most severe outbreaks (number of chickens infected) were predicted for H5N1, H7N1 and H7N3 virus subtypes, and the least severe for H5N2 and H7N7, in which outbreaks for the latter subtype were predicted to develop most slowly. CONCLUSIONS: These simulation results suggest that surveillance of certain subtypes of avian influenza virus, in chicken flocks in particular, needs to be sensitive and timely if infection is to be detected with sufficient time to implement control measures. The variability in the predictions highlights that avian influenza outbreaks are different in severity, speed and duration, so surveillance and disease response need to be nuanced and fit the specific context of poultry species and virus subtypes.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Subtipo H7N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Subtipo H7N3 del Virus de la Influenza A , Pollos , Brotes de Enfermedades/veterinaria , Enfermedades de las Aves de Corral/epidemiología
17.
J Virol ; 98(3): e0140123, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38358287

RESUMEN

Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Animales , Aves , Genotipo , Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Gripe Aviar/virología , Filogenia , Aves de Corral
18.
Animal ; 18(3): 101085, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364655

RESUMEN

The purpose of this study was to analyze the characteristics of occurrence and spread of highly pathogenic avian influenza H5N1 (HPAI-H5N1) globally, understand its spatiotemporal characteristics, investigate the risk factors influencing outbreaks, and identify high-risk areas for disease occurrence. We collected the data on global poultry HPAI-H5N1 outbreaks from January 2005 to April 2023, and conducted a thorough analysis of the spatial and temporal characteristics of the disease through time series decomposition and directional distribution analysis. Additionally, an ecological niche model was established to explore the major factors influencing the occurrence of HPAI-H5N1 and to pinpoint high-risk areas. Our findings revealed that HPAI-H5N1 outbreaks were cyclical, and seasonal, exhibiting a rising trend, with a predominant northwest-southeast transmission direction. The ecological niche model highlighted that species factors and economic trade factors are critical in influencing the outbreak of HPAI-H5N1. Variables such as chicken and duck density, population density, isothermality, and road density, contributed to importantly risk of outbreaks. High-risk areas for HPAI-H5N1 occurrence were primarily identified in Europe, West Africa, Southeast Asia, and Southeast China. This study provided valuable insights into the spatial and temporal distribution characteristics and risk factors of global poultry HPAI-H5N1 outbreaks. The identification of high-risk areas provides essential information that can be used to develop more effective prevention and control policies.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Gripe Aviar/epidemiología , Gripe Aviar/prevención & control , Aves de Corral , Brotes de Enfermedades/veterinaria , Factores de Riesgo , Enfermedades de las Aves de Corral/epidemiología
19.
Sci Rep ; 14(1): 3635, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351134

RESUMEN

Highly pathogenic avian Influenza virus (HPAIV) has spread in an unprecedented extent globally in recent years. Despite the large reports of cases in Asia, Europe, and North America, little is known about its circulation in South America. Here, we describe the isolation, and whole genome characterization of HPAIV obtained from sampling 26 wild bird species in Peru, representing one of the largest studies in our region following the latest HPAIV introduction in South America. Out of 147 samples analyzed, 22 were positive for detection of avian influenza virus using a qRT-PCR-based assay. Following inoculation into embryonated chicken eggs, fourteen viral isolates were obtained from which nine isolates were selected for genome characterization, based on their host relevance. Our results identified the presence of HPAIV H5N1 subtype in a highly diverse wild bird species. Phylogenetic analysis revealed that these isolates correspond to the clade 2.3.4.4b, sharing a common ancestor with North American isolates and forming a monophyletic group along with isolates from Chile. Altogether, changes at the amino acid levels compared to their closest relatives indicates the virus is evolving locally, highlighting the need for constant genomic surveillance. This data evidence the chances for spillover events increases as the virus spreads into large populations of immunologically naïve avian species and adding conditions for cross species transmission.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Chile , Perú/epidemiología , Filogenia , Virus de la Influenza A/genética , Animales Salvajes , Pollos
20.
Sci Rep ; 14(1): 3391, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336908

RESUMEN

In this study, the efficacy of the promising iron-based polymeric inorganic coagulant (POFC) was assessed for the reduction of eutrophication effect (freshwater toxicity) and the microbial loads from wastewater. Toxicity assessment for POFC was conducted on mice and skin cell lines. The results confirm the lower toxicity level of POFC. The POFC showed excellent antibacterial efficacy against Gram-positive and Gram-negative bacteria. Moreover, it demonstrated a remarkable effectiveness against black fungus such as Aspergillus niger and Rhizopus oryzae. Additionally, POFC showed antiviral effectiveness against the highly pathogenic H5N1 influenza virus as well as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). POFC-based treatment gives excellent removal percentages for phosphate, and phosphorus at doses below 60 ppm with a low produced sludge volume that leads to 84% decrease in the rate of eutrophication and freshwater toxicity. At a POFC concentration of 60 ppm, remarkable reduction rates for total coliforms, fecal coliforms, and E. coli were achieved. After POFC-based coagulation, the produced sludge retains a lower bacterial density due to the antibacterial activity of POFC. Furthermore, it revealed that the observed removal efficiencies for fungi and yeasts in the produced sludge reached 85% at a POFC dose of 60 ppm. Overall, our research indicates that POFC has potential for application in pre-treatment of wastewater and serves as an antimicrobial agent.


Asunto(s)
Antiinfecciosos , Subtipo H5N1 del Virus de la Influenza A , Ratones , Animales , Aguas Residuales , Aguas del Alcantarillado , Antibacterianos/farmacología , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Antiinfecciosos/farmacología , SARS-CoV-2 , Polímeros , Eutrofización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...